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Ultrasonic attenuation measurements provide nondestructive means for

characterizing material properties. In polycrystalline solids the frequency
dependence of attenuation characterizes microstructure and hence the mechani-

cal properties governed by microstructure. Microstructure, morphology, speci-
fic mechanical properties, and ultrasonic characteristics of materials are

often uniquely interrelated (Green, 1973a, 1981, 1985; Vary, 1984).

Although expressions that relate ultrasonic attenuation to specific

microstructural factors exist, they are fragmented and unsatisfactory because
they consist of diverse piecemeal descriptions and ad hoc combinations of

attenuation mechanisms over various frequency ranges of interest (Merkulov,
1956; Papadakis, 1960, 1965b; Serabian and Williams, 1978). A unified

approach is needed to overcome these shortcomings and to help resolve ques-

tions that arise in attempts to identify and evaluate key microstructural
factors that govern mechanical properties.

The approach given herein depends on treating material microstructures as

elastomechanical "filters" that have analytically definable transfer func-

tions. These transfer functions can be defined in terms of the frequency

dependence of the ultrasonic attenuation coefficient (Vary, 1980b, 1984). The

transfer function concept provides a basis for synthesizing expressions that
characterize polycrystalline materials relative to microstructural factors

such as mean grain size, grain-size distribution functions, and grain boundary
energy transmission. Although our approach is nonrigorous, it leads to a

rational basis for combining the previously mentioned diverse and fragmented
equations for ultrasonic attenuation coefficients.

BACKGROUND AND THEORY

General

Ultrasonic materials characterization involves both velocity and attenu-

ation measurements. Velocity measurements are useful for measuring elastic

constants, residual stresses, density, etc. This paper concentrates on atten-

uation measurements because they are pivotal to understanding interrelations

between microstructure and mechanical properties. The characterization of
mechanical properties depends on precise measurements of attenuation.

Ultrasonic frequency-spectrum analysis provides a means for character-

izing microst_uctural factors that govern mechanical properties (Papadakis,

1976; Fitting and Adler, 1981; Vary, 1984). The frequency range emphasized
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herein is that normally used for interrogating polycrystalline engineering
materials (i.e., about I0 to I00 MHz). By using ultrasonic frequency-spectrum

analysis and signal deconvolution algorithms (Bracewell, 1978; Bendat and

Piersol, 1980; Vary, 1980b; Williams, et al., 1985a), it is possible to define
transfer functions that characterize microstructures relative to their effect

on wave propagation and also on mechanical properties. It will be seen that

these transfer functions are definable in terms of the frequency dependence of
the attenuation coefficient.

Pulse Echo Method

For the purposes of this paper we assume a material sample with flat,

parallel opposing surfaces. The sample is examined with a broadband, pulse--

echo system using digital signal acquisition and processing (fig. I). A buf-

fered, piezoelectric transducer collects a set of echoes returned by the back

surface of the sample. Only the first two echoes, BI and B2, are selected
for analysis. Signal acquisiLion, processing, and analysis are done as des-

cribed by Papadakis (1976), Vary (1979b, 1980a,b), Generazio (1984), and Kline

(1984). The echoes are transformed to the frequency domain by digital Fourier

transform algorithms. Ultrasonic attenuation as a function of frequency and

therefore information on material microstructure is obtained by deconvolution

of echoes BI and B2.

Material Transfer Function

In the following discussion the quantities BI, B2, Ii, 12, T, and R
(fig. 2) are Fourier transforms of corresponding time-domain quantities. The

quantities BI, B2, Ii, and 12 are spectra of waveforms, and T is the
material transfer function, to be defined in the frequency domain. (Phase

spectra and such associated topics as waveform synthesis and phase interfer-
ence effects are not considered herein.) The reflection coefficient R is

also a function of frequency, albeit a weak function in most cases (Papadakis,

1968; Generazio, 1984). The transfer function will be defined in terms of

BI, B2, and R.

Internal echo II is the source of the "reduced" signal BI (i.e.,
reduced by the factor (I + R), where R is the reflection coefficient at the

specimentransducer interface). The reflection coefficient is unity (i.e., I)
at the free surface. Algebraic signs carried by reflection coefficients

depend on whether they are defined as power or amplitude quantities and on the

input-output direction of signals across interfaces. The "power" (energy)

definition as given in appendix A applies to R herein. A part of the energy

of II is reflected and appears as the second internal echo 12 giving the
reduced echo B2; thus

BI = (I - R)I I (I)

B2 = TR(I -R)I I (2)

where BI, B2, and II are the "power" (i.e., magnitude-squared spectra of
corresponding amplitudesquared time-domain signals). Combining equations (I)
and (2) yields
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B2
T = -- (3)

RB 1

There are transfer functions associated with the instrumentation, signal

transduction, and other aspects of the signal acquis[tion system. These can

be ignored because in the pulse-echo configuration they vanish, just as the

tez-m (I + R)I 1 vanishes in equation (3).

Attenuation Coefficient

Papadakis (1968; 1976) has demonstrated that the attenuation coefficient

can be found by frequency spectrum analysis and that it may be written as

(=A

where x is the sample thickness. The attenuation coefficient e is a func-

tion of frequency and hence as with the quantities T, BI, and B2, it is

appropriate to treat it as a Fourier transform of a time-domain quantity. Then
because the transfer function T and the attenuation coefficient e are

both defined in terms of BI, B2, and R, equations (3) and (4) can be com-
bined to get

T = exp(-2xe) (5)

Thus the transfer function is defined in terms of an attenuation coefficient.

Conversely, if the material transfer function T can be prescribed apriori,
appropriate expressions can be found for the attenuation coefficient e. It

will be seen that a general, unified expression can be derived for e for the

various energy loss mechanisms in polycrystalline solids by using the preced-

ing equations and the transfer function concept.

Attenuation Mechanisms

The energy loss mechanisms that govern ultrasonic attenuation in the fre-

quency ranges (bandwidths) of interest for polycrystalline engineering solids
are known (Mason and McSkimmin, 1947; Lifsitz and Parkomovskii, 1950; Granato

and L_cke, 1956; Merkulov, 1957; Truell, et al., 1969; Bahtia, 1976). The two

p_incipal causes of attenuation are scattering and absorption. Diffusion,

Rayleigh, and stochastic (or phase) scattering losses are extrinsic; absorp-

tion losses from dislocation damping, anelastic hysteresis, relaxation, and

thermoelastic effects are intrinsic to individual grains (i.e., crystallites).

We are not concerned with geometrical losses, such as those due to dif-

fraction effects, which are not inherent to material microstructures. These

effects can be either controlled or eliminated from attenuation measurements

by well-known experimental and data reduction procedures (Papadakis, 1975) in

order to get the true attenuation coefficient as a function of frequency.
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Extrinsic Mechanisms

Scattering usually accounts for the greatest portion of losses in poly-

crystalline aggregates (Papadakis, 1964a,b, 1965a,b, 1970; Serabian and

Williams, 1976; Goebbels, 1980). For polycrystalline aggregates expressions
that have been developed for the scatter attenuation coefficient e as a

function of frequency f are referred to three regimes that are defined by
the ratio of mean grain size a to dominant wavelength k.

For the Rayleigh scattering regime, where k >> _a,

= c a3f 4 (6)
r r

For the stochastic (phase) scattering regime, where k m _a,

= e af2 (7)
P P

For the diffusion scattering regime, where k << _a,

-I

_d = cda (8)

In equation (6) a3 represents grain volume, where the grains are to be con-
sidered as having a variety of nonequiaxed, nonspherical shapes (Papadakis,

1965b). The constants c contain other quantities (i.e., geometric factors,

longitudinal and transverse velocities, density, and elastic anistropy fac-

tors)(Mason and McSkimmin, 1947, 1948; Lifsitz and Parkomovskii, 1950;

Merkulov, 1957; Truell, et al., 1969). These factors will be considered later

in this paper.

Intrinsic Mechanisms

Absorption losses due to dislocation damping, hysteresis, thermoelastic

effects, etc., are intrinsic to grains (crystallites) and involve direct con-
version of acoustic energy to heat. These attenuation mechanisms are essen-

tially independent of grain size, shape, volume, etc.

For hysteresis losses (Kolsky, 1953; Nowick and Berry, 1972)

eh = chf (9)

For thermoelastic losses (Lucke, 1956)

at = ctf2 (I0)

Hysteresis losses (eq. (9)) arise when acoustic waves cause stress-strain
damping. Hysteresis losses with a first-power frequency dependence are usu-

ally observed in single crystals and amorphous solids and with difficulty in
polycrystalline solids (Mason, 1958). Equation (I0) gives the frequency

dependence of thermodynamic losses that arise when longitudinal waves produce
heat flow from dilatation to compression regions.
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Viscous losses (Auld, 1973) also exhibit a second-power frequency depen-

dence but are generally negligible in solids. Models for absorption losses

caused by dislocation vibrations, relaxation effects, and internal friction

predict second-power frequency dependence down to frequency independence

(Granato and LOcke, 1956; SeeKer and Schiller, 1962; Truell, et al., 1969).

Absorption losses due to magnetic domains, electrons, or phonons are special

cases involving ferromagnetic materials, very high frequencies, or cryogenic

temperatures, respectively, and are not considered here.

Combined Expressions

Total attenuation coefficients are usually written ad _hoc as sums of

coefficients for scattering and absorption. For example, equations (7)

and (9) are combined to fovm an expression for the total attenuation coeffi-

cient e, where

= chf + caf 2 (II)_hp p

or equations (6) and (9) are combined to get

3f4
_hr = chf + c a (12)r

Combined expressions as in equations (Ii) and (12) are co_venienfi for fltting

experimental data and for analyzing the contributions of attenuation mecha--

nisms and underlying microstrucfiural factors.

An inconsistency occurs in attempting to combine fihe expressions for

Rayleigh and stochastic attenuation in equations (6) and (7) because as ultra-

sonic frequency increases, the fourth-power term for Rayleigh scattering

becomes dominant. This contradicts the expectation that for higher frequen-

cies, as wavelength diminishes and approaches grain size, the second power of

frequency due to stochastic scattering should dominate. Papadakis (1965b) and

others have dealt with this issue by applying equations (6) and (7) piecemeal

and adapting a smoothing function to form continuity between the Rayleigh and
stochastic regimes. Smith (1984) has observed that the transition from

Rayleigh to stochastic scattering depends on grain-size distribution and sug-

gests introducing a probability function in scatter attenuation equations pro-
posed by Roney (1950) and Serabian and Williams (1978).

Maisel (1984) overcomes the problem of expressing the transition from

Rayleigh to stochastic scattering by using an electrical network analog rio

model ultrasonic scattering. Maisel's results suggest expressions for the

attenuation coefficient that combine Rayleigh and stochastic frequency depen-

dencies in a continuous function. One such expression is

4a3k 4
= c (13)

rp rp 1 + 4a2k 2

where c is a material constant incorporating average fractional deviations

of density and compressional modulus, a is mean scatterer size, k is wave

number (2_f/v), and v is velocity. The fovmulation of equation (13) allows
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the fourth power of frequency to dominate at low frequencies and the second
power to dominate at high frequencies. A similar formulation was derived by

Perkeris (1947) by assuming an autocorrelation function for polycrystalline

inhomogeneity. Although both formulations allow a smooth transition from

fourth- to second-power frequency dependence with increasing ultrasonic fre-

quencies, no allowance is made for frequency independence at extreme frequen-

cies in accordance with equation (8). Rokhlin (1972) describes a generalized

formulation that encompasses Rayleigh, stochastic, and diffusion scattering.
However, in Rokhlin's approach a smooth transition between scattering regimes

is lost because of the periodic nature of the sine function that was used.

MICROSTRUCTURE CONSIDERATIONS

Grain Size

Before dealing with transfer function synthesis we briefly review some

relevant aspects of the interplay of microstructure and the previously dis-
cussed formulations for ultrasonic attenuation.

A universally cited quantity for characterizing polycrystalline micro-

structures is "mean grain size." This quantity is used regardless of diffi-

culties inherent in measuring it or assigning appropriate values to it,

especially in materials that exhibit complex microstructures (subgrains,

second phases, etc.). Nevertheless it is appropriate, for many single-phase
polycrystallines with "uniform" microstructures, to speak of a mean grain

size. This depends on discovering a definitive grain-size distribution func-

tion (DeHoff, 1968). Most polycrystallinesexhibit grain-size distributions

that are highly skewed and nonGaussian because of a high incidence of large

grains (Papadakis, 1964b, 1965b; SchSckler, 1968; Evans, et al. 1978; Smith,

1984; Tittmann, et al., 1985).

There are polycrystalline aggregates that have microstructures with

readily defined mean grain sizes (SchSckler, 1968). When expressions of the

form of equations (Ii) and (12) are fitted to experimental attenuation data

for samples of these materials, a new expression for the same sample after

annealing to a different mean grain size can be obtained by modifying the

coefficients of frequency by a numerical scale factor (e.g., the ratio of mean

grain sizes). This has been demonstrated for polycrystalline samples of

nickel and copper where measurements were predominantly in the stochastic

scattering regime (i.e., principal wavelengths commensurate with grain size

(Generazio, 1985)). A general scaling parameter for grain size has been

described by Serabian and Williams (1978).

Scaling of attenuation expressions probably applies only to homomorphic

microstructures having grain-size distribution functions that are invariant

with changes in mean grain size. Photomicrographs of the successive heat

treatments produced by Generazio (1985) seem to scale (i.e., map) exactly in

this sense. Apparently scaling can be done even with rather complex micro-

structures despite difficulties in producing or identifying homomorphic grain-
boundary patterns.
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Scattering Centers

Scattering theories usually consider ensembles of scattering centers
embedded in a featureless continuum. Current theories for polycrystallines

account only for scattering by equlaxed grains and neglect effects of texture,
anisotropy, grain-size variations, etc. Indeed, well-fozTaulated theories for

attenuation exist only for the simple case of single-phase polycrystalline

solids with virtually identical, equiaxed grains and for frequencies that
satisfy the conditions ka << 1 or ka >> 1, where k is wave number and a
is mean grain (scatterer) size.

Underlying equations (6) and (7) is the assumption of single scattering
by independent scatters; the conceptual and theoretical difficulties that

arise with multiple scattering where scatterers interact and velocity dlsper-

sion effects are likely to arise are ignored. For example, equation (6) is
based on the "Rayleigh criterion" and ideal elastic scatterers that are suffi-

ciently separated to ensure single scattering (Truell, et al., 1969).

Fourth- and second-power relations given in equations (6) and (7),

respectively, have been experimentally confirmed for special cases (Winkler
and Murphy, 1984). Papadakis (1981) and Sayers (1985) realized the fourth-

power relation of equation (6) by measuring scattering due only to "minority"

phases (e.g., carbon nodules and inclusions) in polycrystalline aggregates.

Evans, et al., (1978) used a similar approach for materials with sparse dis-

tributions of "predominant" scatterers in a polycrystalline "continuum."

Apparently, when used with materials exhibiting discrete, widely sepa-

rated, "strong" scattering centers, the Rayleigh criterion is satisfied and

the difficulties due to multiple scattering are avoided. It seems remarkable

that frequency dependences predicted by rather simplified scattering models
can be realized even with complex polycrystallines.

Empirical Correlations

For most polycrystallines the overall experimentally determined frequency

dependence of attenuation is not an integral power. Exponents on frequency
even in the Rayleigh or stochastic regimes rarely equal exactly 4 or 2,

respectively (Papadakis, 1981). This is probably due partly to imprecisions

in experimental measurements and to attenuation data being defined only within
the bandwidth used to interrogate the sample. Within limited bandwidths the

best fit of experimental data simply reflects only a portion of the actual
attenuation function.

Because of the aforementioned factors it is often possible to fit attenu-

ation data with expressions that allow the exponent on frequency to be an

experimentally determined variable (Vary, 1980a,b). Among the simplest
expressions of this kind is

>_< = cfm fl < f < f2 (14)

where >e< denotes that e is empirically defined only in a limited fre-

quency range and where m may assume noninteger values. The quantities c

and m will change correspondingly with microstructural changes that affect
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attenuation (mean grain size, grain size distribution, etc.). Experimental

results show that equation (14) is appropriate for fitting attenuation data

over a frequency range that spans the Rayleigh scattering regime for a variety

of polycrystalline materials (Papadakis, 1964a, 1976; Vary, 1978; Bozorg-

Grayeli, 1981; Vary and Hull, 1982, 1983). It will be seen that equation (14)

gives statistically valid descriptions of data in the Rayleigh regime.

Grain Interfaces

From a purely physical standpoint grain facets and surface areas should
influence mechanical properties of polycrystallines. This is certainly true

of properties that depend on the surface energy of grains, properties affected

by the grain-boundary thickness, properties for which grain boundaries are

obstacles, and properties connected with grain- and phase-boundary migrations

and obliterations. The transfer function concept, described next, provides a

basis for a unified expression for attenuation that incorporates the previ-

ously discussed attenuation mechanisms and also a means for studying the

effects of variations in grain-boundary energy transmission factors.

TRANSFER FUNCTION SYNTHESIS

Approach

An attenuation transfer function for polycrystalline _olids is defined in
terms of a lattice model that incorporates the effects of grain-boundary

(interface) spacing and energy transmission across interfaces. The lattice

model is generalized by the introduction of probability distribution functions

to account for variations in grain and scatterer size and boundary spacing.

The transfer function concept provides a convenient and rational basis for
incorporating the previously described attenuation mechanisms into a unified

expression for ultrasonic attenuation.

Interface Transfer Function

The transfer function of an interface between two media is defined in

terms of the reflection coefficient at the interface. We assume ideal flat

interfaces between dispersion-free media with unequal acoustic impedances. In

this case the reflection coefficient R is taken as a frequency-independent

Heaviside step function in the frequency domain, corresponding to a delta

(impulse) function in the time domain, see figure 3 and appendix B.

The reflection coefficient R in equations (I) to (4) conforms with the

interface transfer function notion given here. If it becomes necessary to

consider velocity dispersion or nonideal (thick, strained, acoustically rough,

etc.) interfaces, expressions for R (and the quantity G, defined below)

would simply assume frequency-dependent forms (Papadakis, 1976; Kinsler,

et al., 1982; Generazio, 1984).
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Lattice Model Transfer Function

The lattice model illustrated in figure 4 represents a volume that con-

sists of series of plane parallel interfaces separating thin layers with

unequal acoustic impedances (compare with Rokhlin (1972), where a volume is

divided into equal rectangular parallepipeds). The model is one dimensional

and accounts for energy losses suffered by longitudinal rays traveling at
normal incidence to the interfaces. Each of the n internal interfaces has a

transfer function defined in terms of an internal reflection coefficient G

(appendix B). For the moment consider each layer as a featureless (scatterer
free) medium with an intrinsic attenuation function

A = IACf)l = exp(-_.£) (15)
1

where £ is layer thickness and A is the magnitude (power) spectrum of

A(f). As developed in appendix C the transfer function T for the lattice
model can be reduced to the form

T = (H - G) 2n A2(n+l)[_...] (16)

where H = IH(f) l = 1 is the Heaviside unit step function that will be ren-

dered as 1 hereinafter (i.e., (H - G) = (I - G)). The multiple convolution

(multiple reflection) factor [_....] in equation (16) is

- 2 2(n-l)

[_...] = (RG) q-IA2(q-l) Gq-IA 2(q-'l G2(q-I)A 2(q-l) (17)

The number of first-order multiple reflections in each lattice layer is

q - I, and the number of layers is n + I. Equation (16) defines T in terms

of power (energy) reflection functions R and G (appendix A). The terms

A, G, R, and T are Fourier transforms. The various powers and products of

A, G, and R are convolutions of their time-domain counterparts. For exam-

ple, RG in equation (17) is the convolution of corresponding time-domain

quantities. The quantity [_...] given in equation (17) explicitly contains

only first-order multiple reflections. It will be seen that this is suffi-

cient for generalizing the model.

Lattice Model with Scattering

The lattice model may be extended to include scattering by taking A in

equations (16) and (17) to consist of both intrinsic and extrinsic attenuation

factors,

A = [exp(-e.£)][exp(-_ £)] (18)
I e

If it is postulated that each layer contains an independent scattering center
in addition to intrinsic attenuation, equation (16) takes the form

T = (I - G)2n[exp(-_i_)exp(-ae£)]2(n+l)[_...] (19)
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Let the intrinsic attenuation be due to anelastic hysteresis, and in accordance
with Nowick and Berry (1972) express it as

_i = chf = (_)f (20)

where h is a hysteresis constant and v is velocity. For extrinsic attenu-

ation take the Rayleigh scattering expression derived by Mason and McSkimmin

(1947),

= c a3f4 (16_4Kh a3f 4

e r = \ 3v4 / (21)

where a is mean scatterer size (with 4xa3/3 replacing the mean grain vol-
ume in the Mason and McSkimmin (1947) derivation) and K is elastic anisot-

ropy (i.e., average change in elasticity encountered from one layer to the next

(Mason and McSkimmin, 1948; Lifsitz and Parkomovskii, 1950; Merkulov, 1957)).

Generalization for Polycrystallines

We generalize the lattice model to resemble a polycrystalline by postu-

lating unequal layer thicknesses and nonparallel interfaces. Thus any ray

traveling at normal incidence to the front and back surfaces (still mutually
parallel) encounters a sequence of interfaces similar to those in a polycrys-

talline aggregate.

Combining equations (4) and (19), noting that, for large values of n,
(n/x) = (I/£) while (n + I) £ = x and taking £ as mean layer thickness, an

expression is obtained for _ in terms of T,

" \%/ l e \zx/

The quantity G i_now taken as average reflection coefficient for the ran-
domly oriented interfaces. If G is sufficiently small and energy is indeed

scattered away in lattice layers, the contribution of higher order terms in

the summations in equation (17) may be ignored. This is equivalent to setting

q = 1 in equation (17) so that in [_...] = 0 (see DISCUSSION). Although

the energy transmission coefficient 1 - G may approach unity, the interface

transparency term in (i -G) is always finite (i.e., a nonzero negative).

Given the preceding argument and noting that £ corresponds to a mean

grain size represented by the quantity a and combining equations (20) to

(22),

a = - In (I - G) + f + \3--_--/ as2f4 (23)

Although a spherical scatterer with volume 4_a3/3 is implicit to equa-

tion (21), in equation (23) scatterer geometry is made abstract so that s is
an effective mean scatterer diameter while a is mean scatterer length. Thus

266



we allow for nonequiaxed grains or scatterers with aspect ratios a/s of 1 or

greater. Rokhlin (1972) assumes grains to be parallelepipeds having square

ends but different side lengths in the direction of wave propagation.

Generalization for Grain-Size Distribution

The range of grain sizes usually contained in a polycrystalline can be

described by a histogram or, for a large grain population, by an analytical

probability distribution function. Grain-size distributions are usually

nonGaussian and their probability distributions are typically log-normal func-
tions (DeHoff, 1968; SchUckler, 1968; Smith, 1984). A function that describes

grain-size distributions representative of most polycryst_lline solids is
given by

where y is a spatial (length) variable and a is mean grain size. We have
pointed out that the quantity a is defined in the frequency domain and can

therefore be treated as the Fourier transform of a time-domain quantity. To

incorporate probability distribution functions in the expression for e given

by equation (23), we transpose to the time domain, take the Fourier transform,

and find the results of convolution with probabalistic factors in equa-
tion (23). Therefore let

p(t) = exp p(t) = 0 for y < 0 (25)

where u is mean transit (grain delay) time corresponding to mean grain size

a and a = uv, where v is average velocity (fig. 5). The Fourier transform
of p(t) is

P(f) = [1 + (_uf)2]-I expE.2i tan-l(_uf_ (26)

The phase spectrum given by the exponential term in equation (26) is ignored
since we are interested only in the magnitude spectrum of P(f) (i.e.,

P = IP(f)l). The implicit assumption is that phase interference effects are

insignificant. In general, the probability distribution function of the scat-

terer diameter s is not identical to that of its axial length a. Therefore

we admit two separate expressions for P,

-I

Pa = [I + (_Uaf)2] (27)

where subscripts s and a refer to mean scatterer diameter and length,

respectively. That is, ua = a/v and us = s/v.
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Now consider the first term in equation (23) as a probabilistic quantity.
In the frequency domain the probabilistic weighting of the reflection function

for transit time variations is GP and the probabilistic weighting for trans-

mission is G(I - P). Therefore the frequency dependence of the boundary
energy transmission term I - G in equation (23) is in [I - G(I -P)]. The

expression for P in equation (27) will be used for this case. The middle

term in equation (23) is independent of grain size and remains unaltered. In

the third term of equation (23) a and s are probabilistic so that

e = - In [I -G(I - Pa )] + f + \3vu a / a s a s

where ua = a/v, us = s/v, and v is average velocity. The corresponding

probability functions Pa and Ps are to be defined according to the nature

of the various microstructural factors that govern attenuation (grains, pre-
cipitates, etc.) in a particular solid. A further generalization would take

grain-boundary spacing and scatterer spacing (and dimensions) to be indepen-
dent of each other.

VERIFICATION AND APPLICATIONS OF MODEL

Comparison with Scattering Theory

We examine a special case of equation (29) wherein grains are equiaxed

scatterers (i.e., a = s = vu). Also, take Pa = Ps = P = IP(f) l. For the
moment ignore the first two terms in equation (29) so that consequences of the

preceding derivations may be compared with classic expressions for scattering.

The extrinsic attenuation (third) term of equation (29) expands to

(16_4KI (uf)4
ee = \ 3vu / ------2 (30)

[I + (_uf) 2]

For k >> _a equation (30) reduces to the expression for Rayleigh scattering
(Mason and McSkimmin, 1947),

_16_4K_ a3f 4

ear = \ 3v4 / (31)

For k _ _a equation (30) reduces to the expression for stochastic (phase)
scattering,

= \3--_ / af2 (32)
eep

For k << _a equation (30) reduces to the expression for diffusion scattering,

_ed = _ (33)
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Thus we have in equation (30) an expression for extrinsic attenuation that
covers all theoretically postulated scattering mechanisms continuously over

all frequencies.

Although we have adopted the scatter attenuation expression of Mason and

McSkimmin (1947), the fomm developed by Lifsltz and Parkomovskii (1950) would

be appropriate for defining extrinsic attenuation in equations (21) and (30)

to account for elastic randomization and attendant effects of mode conversion.

However, it is convenient and sufficient for our purposes to continue using

the expression for extrinsic attenuation given in equation (21).

Comparison with Experiment

Consider a simple polycrystalline where, as in the previous section,

grains and other scatterers are taken to be identical, so that a = s = vu,
where a is mean grain size, u is mean grain delay, and v is mean veloc-

ity. Using equation (30) for extrinsic scattering, equation (29) becomes

We assign appropriate values to G, K, and h for comparing attenuation

coefficients predicted by equation (34) with experimental data for nickel,
copper, and iron polycrystallines.

Serabian and Williams (1978) estimated hysteresis constants for several

metals (e.g., h = 2xlO -5 for 97.4 percent iron alloys and h = 3x10-4 for

98.9 percent nickel alloys). Herein we assume h = 3x10-4 for 99.99 percent
copper.

Both G and K are estimated from equivalent equations and may be taken

to be identical for cubic crystals (Mason and McSkimmin, 1947, 1948; Mason,
1958) :

, , ,2 2

K: L <c{i> ] : ¥ Zl : G (3s)

where c' is the elastic tensor coefficient (compression modulus) and <c'> is
its average value. The z = pv tevms are defined in appendix A and are

based on principal longitudinal velocities. We can assume that for any given

material G is directly proportional to K and that for cubic crystallites

G = K. According to Mason and McSkimmin (1948) G = K = 0.0074 for copper,
0.0067 for iron, and 0.0072 for nickel.

Attenuation-versus-frequency curves generated with equation (34) are

compared with experimental curves for the cubic materials iron, copper, and
nickel in figures 6 to 8. The estimated values for K and G do not account

for the effects of oblique incidence or mode conversion at boundaries; these
effects would increase their effective values. Therefore the values for K

cited above should give low predictions of attenuation since shear waves pro-

duced by mode conversions are more effectively scattered. Elastic anisotropy
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for shear waves can exceed that for longitudinal waves by perhaps a factor of
I0. It is probably for this reason that the best agreement with experimental

data is obtained when we double the estimated values for K for use in equa-

tion (34). It will be seen that K is in general a composite quantity

containing other scattering factors.

Figure 6 compares original experimental data of Merkulov (1957) for iron
with attenuation-coefficient-versus-frequency curves generated with equa-

tion (34). Excellent agreement between the experimental and predicted attenu-

ation coefficients is evident in figures 6(a) and (b) for the particular values

selected for K, G, and h for iron, even to the extent that curve crossovers

at approximately 14 MHz are predicted. Figures 6(c) and (d) exhibit attenu-

ation curves for iron over a broader frequency range of I00 MHz, as opposed to

the 20-MHz range in figure 6(b). Figure 6(c) is based on K = 0.0067 and

figure 6(d) on K = 0.0134 in equation (34) for grain sizes from 40 to 250 _m.

Figures 7 and 8 compare original experimental data of Generazio (1985) for

copper and nickel, respectively, with attenuation-versus-frequency curves
generated with equation (34).

Data Simulation for Curve Fitting

It is apparent that prior knowledge of the material parameters h, G,

and K is needed to predict the attenuation coefficient with equation (34).

Estimates of these quantities were sufficient to simulate attenuation curves

for iron, copper, and nickel in figures 6 to 8. We illustrate an empirical-

graphical approach for estimating and verifying values for h, G, and K in

solids, where these quantities are not easy to determine.

Our approach is founded on the observation that over a limited frequency

range attenuation data can often be fitted quite well with equation (14)
(Papadakis, 1964a; Vary, 1978, 1982; Bozorg-Grayeli, 1981). It has been shown

that for data in the Rayleigh regime extrapolations based on the empirical

constants c and m lead to excellent correlations with mechanical proper-

ties (e.g., fracture toughness)(Vary, 1978; 1979; Vary and Hull, 1982, 1983).

No analytical proof is offered to show why an equation of the form of

equation (14) should be expected to represent either equation (34) or (29) in

any particular frequency regime. However, we will show that equation (14)

satisfactorily represents experimental data in restricted frequency regimes by

using equation (34) to generate raw data sets in the Rayleigh regime. The

point is illustrated by simulating data sets for a range of mean grain size

a and values of K, G, h, and v that represent iron.

A series of discrete data sets generated with equation (34) are exhibited

in figure 9 for the frequency range I0 to I00 MHz, where the Rayleigh wave-

length criterion is satisfied (i.e., k >> _a). We ignored data below 15 MHz,
where diffraction effects are most pronounced for actual data sets. Treating

the simulated data as actual raw attenuation data, we determined c and m

values by a least-squares fit to equation (14) for each "material sample."

The c and m values and the correlation coefficients of the curve fittings

were tabulated for each data set. As seen in figure 9 calculated frequency

exponents m were clearly nonintegral and ranged from approximately 1.8 to
2.3, corresponding to mean grain sizes from 2 to 20 _m, in the case illus-

trated. The simulated exponents spanned a range similar to experimentally
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determined frequency exponents for a number of polycrystalllnes in the Rayleigh

regime (Vary, 1978).

For the material parameters chosen for generating data for figure 9, the

correlation coefficient was always greater than 0.999. Thus by treating the

simulated data precisely the way one could treat a set of actual attenuation

data, we found that equation (14) renders a statistically valid representation

within the frequency bounds specified.

Interrelation of Parameters

In addition to representing attenuation data for a given material sample

within specified frequency bounds, the parameters c and m are interrelated
for variously conditioned samples of the same material. As an example, exper--

imentally determined values of c and m for two maraging steels were plotted

and tabulated (fig. I0). All materials for which the quantities c and m

have been experimentally measured exhibit the strong functional relation

between c and m evident in figure I0. The quantities c and m are evi-

dently interdependent for any set of related materials or samples of the same

material that apparently differ due to metamorphic changes brought about by

heat treatment or other thermomechanical processing methods that retain global

microstructural patterns but alter mechanical properties.

By varying the material parameters G, K, h, and v in equation (34) and

allowing the mean grain size to take representative values, the c and m

quantities corresponding to any particular material can be duplicated. Para-

metric fields based on varying G, K, and h appear in figure II. The fields
in figure II were created by using the curve-fitting method illustrated in

figure 9 (i.e., by simulating attenuation data with equation (34), fitting

with equation (14) in the 15- to 100-MHz range and including in the fields

only points for which the curve-fit correlation exceeded 0.999). Values

selected for h, G, and K corresponded to those for maraging steel and v

was taken to equal 0.56 cm/_s, the mean value for a 250-grade maraging steel

(Vary, 1978).

Coplotted in each field in figure II are data for the 250-grade maraging

steel from figure I0 for which the mean grain size ranged from about 8.5 to

13 pm. Accordingly, in figure ll(a) the maraging steel data fall near the

curve for mean grain size a equal to I0 _m. This is not fortuitous, since

the location and shape of the field, relative to experimental c and m

values for the maraging steel, depend on judicious selection of values for h
and G. Figures ll(b) and (c), where we assume that a = I0 _m, appear to

confirm the values G = 0.007 and h = 0.00002 for the 250-grade maraging
steel.

An unexpected result is that each field in figure II indicates that the

quantity K, the elastic anisotropy factor, varies by approximately a half

order of magnitude among the maraging steel samples represented. Similar

results were obtained for the 200-grade maraging steel data in figure I0.

This supports the notion that a material will have a different value of K

after thermomechanical conditioning. Indeed, it has been suggested that K

should be viewed as a composite quantity that includes a scattering coefficient

(Mason, 1958; Papadakis, 1965a; Serabian and Williams, 1978). Heat treatment,

strain, deformation, etc., alter attenuation properties due to effects on
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dislocations and grain boundaries (Serabian, 1985). These effects are apparent
when experimental values for c and m are coplotted in appropriate para-

metric fields as in figure II.

DISCUSSION

General

Our goal has been to develop a unified, comprehensive expression for
ultrasonic attenuation. The incentive was to find a rational basis for iden-

tifying and evaluating key microstructural factors that govern mechanical

properties. We noticed that although previous expressions for attenuation are
theoretically self-consistent, they provide only piecemeal, fragmented des-

criptions of ultrasonic attenuation mechanisms over the broad frequency range
relevant to materials characterization.

We describe a transfer function concept and a heuristic lattice model

that form bases for incorporating well-known attenuation mechanisms into a

unified expression for ultrasonic attenuation. Although we ignore phase

interference effects, our generalized analytical expression continuously

accounts for the waxing and waning of all of the attenuation mechanisms pre-

viously embodied in separate equations. The generalized equation is shown to

predict salient features of experimental attenuation-versus-frequency curves
obtained for typical polycrystalline solids.

We believe that our chief contribution is the transfer function approach,

in which expressions for attenuation coefficients are recognized and handled

as frequency-domain transforms of time-domain quantities.

Microstructure Encompassed

We are concerned with polycrystallines, where ultrasonic attenuation

depends primarily on such extrinsic microstructural factors as grain-size dis-

tribution and properties of grain interfaces. Using equation (34) we concen-

trate on relatively simple fine-grained, isotropic, homogeneous materials with

mean grain sizes in the range I _m to >I00 _m. We expect that the concepts

given herein apply equally well to anisotropic materials and to amorphous or
single-crystal materials that exhibit microporosity, dispersoids, etc. For

example, equation (29) admits additional variables to account for grain ani-

sotropy and bimodal distribution functions for dispersed scatterers.

Probability Distribution Functions

It should be apparent that our selection of a probability distribution

function for use in equation (29) and equations developed from it was quite
deliberate. In addition to representing typical polycrystalline grain popula-

tions, the probability distribution function given in equation (25) has salu-

tary mathematical properties. These are evident in the consequences exhibited

by equations (31) to (33), which depend on the form of the probability func-
tion. Moreover, once the mean is specified for the distribution function in

equation (25), the variance is specified also (i.e., the variance equals half

the square of the mean). Alternative distribution functions, such as Gaussians
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or combinations of normal and log-normal, may provide better descriptions of
particular grain populations. Our immediate purpose was to indicate a rational

method for introducing probabilistic factors in attenuation equations.

Interface Transfer Function

We applied the transfer function concept to a generalized version of the

lattice model to represent polycrystalline materials. One consequence of the

model was the introduction of a grain-boundary (interface) energy transmission

function (e.g., represented by the term (b/a) in (I - G) in eq. (23)). This

term is similar to the diffusion scattering expressions of equations (8) and

(33). It is related to K, the elastic anisotropy factor in equation (33).
Unlike the extrinsic (scatter) attenuation terms that include K, the

In (I - G) term does not vanish in the absence of scatterers. Our model

requires (and retains) it to account for the energy lost by reflection at

internal interfaces. In general, G is frequency dependent (as in the case of

nonideal, thick, or acoustically rough interfaces, see appendix A).

Multiple Reflection Term

In our generalization the multiple reflection term [_...] of equa--

tion (17) is ignored. This is justifiable if the model represents polycrys-

tallines that exhibit no significant forward- or backscatter. The waveform

shown in figure I is a typical of this case (i.e., where no evidence of scat-

ter wavelets appears either between or near the main echo&s). This would not

be true for coars_grained materials that can exhibit considerable backscatter.

In general, the [>_...] term needs to be considered (e.g., when first-and
second-order multiple reflections are significant as in layered structures

(composite laminates)).

The quant%ty [_...] collects all multiple reflections that are not

attenuated or deflected out of the interrogating beam. Referring to equations

(17) and (22), we notice that, in our model, as G _ 0 the lattice interfaces

become transparent, and overall attenuation will be due to intrinsic absorp-

tion and extrinsic scattering, say, due to point scatterers, voids, etc. In

this case equation (22) reduces to e = ei + ee. Note that for all values of

G the first term of each sun_ation in equation (17) equals I.

When the average internal reflection coefficient G lies between 0 and

I, the interfaces assume varying degrees of opacity. For sufficiently large

values of G we can no longer ignore the first and higher power terms associ-

ated with q = 2, 3.... , in equation (17). In this latter case backscatter

would become significant and the effects of the reflection coefficient R at
the transducer-specimen interface enter the expression for =, as for example

in equation (22). Under this condition as in the case of equation (4) meas-

urement of e depends on apriori knowledge or independent measurement of R.

Power Functions of Frequency

Integral exponents on frequen=y, as given by equations (6) to (I0), should

not be expected to apply to experimentally determined relations between the

attenuation coefficient and frequen=y, Our analysis and experimental evidence
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show that even over narrow frequency ranges attenuation is a nonintegral power

function of frequency. Exponents on frequency will assume values between I

and 4 according to the degree of influence of material parameters such as

those appearing in equation s (29) and (34). Indeed, figures 6 to 8 show that
exponents are themselves functions of frequency.

Heretofore, we and other investigators have found it practical to use

nonintegral, fixed exponents to describe empirical relations between attenu-

ation and frequency within bounded regimes° By using the generalized attenu-

ation equations we show that this approach is statistically valid (e.g., as in

the case of fig. 9). However, it is now clear that considerably more informa-

tion concerning microstructure may be extracted by applying the generalized

expressions for attenuation in equations (29) and (34).

Elastic Anisotropy and Related Factors

Our preliminary analysis of the implications of the interrelation of the

empirical quantities c and m from equation (14) confirmed the importance

of considering variations in the effective values of K (and G) in applying

equation (34), especially to polycrystallines modified by thermomechanical

processing. We infer that changes can occur in the effective values of K

that transcend changes in grain geometry (size, shape, etc.). These corre-

spond to changes in mechanical properties (fracture toughness, yield strength,
etc.) in materials in which only slight or no changes in grain size have

occurred. In effect, equations (29) and (34) appear to provide entry to anal-

ysis of subtle metamorphic changes that arise from thermomechanical processing

of polycrystallines.

CONCLUDING REMARKS

A unified expression for ultrasonic attenuation has been introduced to

supplant currently diverse and fragmented equations. A transfer function con-
cept and a heuristic lattice model with an interface energy transmission factor
have been described as rational bases for combining a variety of attenuation

mechanisms and probabilistic factors in a comprehensive equation. Although our

model is essentially one dimensional and we ignore phase interference effects,

the resultant generalized equation predicts salient features of experimental
attenuation-versus-frequency curves obtained for typical polycrystalline sol-

ids. Some consequences of the unified expression have been explored relative

to characterization of key microstructural factors that govern mechanical

properties of polycrystallines.
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APPENDIX A

REFLECTION COEFFICIENT AND ACOUSTIC IMPEDANCE

The reflection coefficient can be defined either in terms of power (energy

intensity) or amplitude (pressure) (Krautkr_mer, 1969; Szilard, 1982). Taking
R as the reflection coefficient and Q as the transmission coefficient across

an interface, from medium 1 to 2, we have for the power case,

R +q =I
P P

2

Rp = z2 + z
(AI)

(4z2z 1)

Qp = 2
(z2 + zI)

and for the amplitude case,

Ra + 1 = _0a

z2 - z1
R = (A2)

a z2 + zI

2z2

Qa - z2 + zI

where zI and z2 are acoustic impedances of media I and 2,

zI = PlVl

(A3)

z2 = P2V2

p is density, and v is velocity.

In polycrystallines grain--boundary interfaces will reflect as well as
transmit ultrasonic energy because of acoustic impedance "jumps" across dif-

ferently oriented contiguous crystals.

The preceding equations for reflection and transmission apply to ideal
interfaces that have no thickness. If there is an intervening medium that has

a finite thickness d such that d greatly exceeds the ultrasonic wavelengths
transmitted, d >> k, the transmission and reflection coefficients are fre-

quency dependent (Kinsler, et al., 1982). Letting v3 be velocity in the

intervening medium (medium 3) between media 1 and 2 and z3 be its acoustic
impedance, R becomes a function of frequency f with the magnitude
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When k3 = (v312_f) >> d, equation (A4) reduces to equation (AI).
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APPENDIX B

REFLECTION COEFFICIENT TRANSFER FUNCTION

In this paper the reflection coefficient R is always taken as a

frequency-domain quantity. For an ideal interface between two nondlspersive
media with unequal acoustic impedances, R is independent of ultrasonic fre-
quency (Papadakis, 1976; Generazio, 1984). We define R as identical to the

Heaviside step function H(f), (Bracewell, 1978)(fig. 3)

{R(f){ = {H(f) l (BI)

where

I for f a 0

IH(f) l = (B2)
0 for f < 0

The time-domain counterpart (i.e., inverse Fourier transfo_Ta) of R(f) is then
the delta (impulse) function 6 defined by

/__6(t) dt = 1 (B3)

where 6 = 0 for t # 0 and t is time.

We adopt the additional formalism that the delta function is the inverse

transform of H(f) with arbitrary magnitude and phase spectra. This allows

the delta function to be positioned at any point in the time domain and to

have any value w (Bendat and Piersol, 1980) so that

t0+¢w6(t - to) dt = w (B4)0-¢

where

_ for t = to

w6(t - to) = (B5)

0 for t _ tO

and where IH(0) I = w by definition of the Fourier transform of 6(t). In

a nondispersive medium IH(f) I = w, a constant over all frequencies f equal
to or greater than 0.
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APPENDIX C

DEVELOPMENT OF LATTICE MODEL EQUATION

A ray is traced through the lattice model as depicted in figure 4.

Starting with the "source" E0, transmissions and first-order multiple reflec-

tions at each interface encountered are summed to determine B1 and B 2.

The lattice front surface has the reflection coefficient R as a result

of coupling to a buffered transducer as in figure I. There are n interfaces

within the lattice, each with the identical reflection coefficient G. The

back surface interfaced with a vacuum (or air) has a reflection coefficient of

unity.

In this appendix, as through the main text, the quantities A, B, G, E,

F, and R are frequency-domain quantities (i.e., Fourier transforms of cor-

responding time-domain quantities). Reflection coefficients are based on the

power definition given in appendix A and therefore B 1 and B 2 must be taken

as power (energy) spectra of corresponding wavefoFms.

Ignoring backscatter (second-order multiple reflections) caused by EO,

the first back echo is

BI = E0(H - R) (el)

where H is the Heaviside unit step function H = IH(f)l = 1 (appendix B).

The second back echo is

B2 Eo(H R)R(H G) 2n q

2(n-1)

[i_ Gq-IA2q] . . [i_ G2(q-l)A2q-l] . . (C2)

where A is unspecified intrinsic and/or extrinsic attenuation within the

lattice layer and is identical in each layer. The echo B 2 is obtained by

summing the internal transmissions and reflections FI, F2, ..., Fn and E1 ,

E2, ..., En. For forward-going terms (e.g., F 1 to Fn)

q

F1 = Eo(H -G) _ RqGq-IA2q-I = FII + FI2 + ... + Flq (C3)
I
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where
f

FII = E0 N(H - G)A

FI2 = EoR2G(H - G)A 3

FI3 = EoR3G2(H - G)A5 (C4)

Flq = EORqGq-I(H _ G)A2q -I

and

q

F <H - G_ G2Cq-I)A2q-In = F(n-1)
I (c5)

For returning echo terms (eog. ' E1 to E )n

q

E1 = Fn(H - G) i_ Gq-IA 2q = E11 + El2 + ... + Elq (C6)

where

Ell = Fn<H - G)A 2

El2 = FnG(H - G)A 4

El3 = FnG2(H - G)A6 (C7)

Elq = FnGq-I(H _ G)A 2q

and

q

E (H - G) _ G2(q-l)A2q-In = E(n_l)
1 (c8)

Then
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Combining equations (el) and (C2) yields

B2--_-= 2nA2(n+l) [_ 1RBI (H - G) (RG)q_IA2(q_ I 2

Gq_IA2(q_l ) G2(q_l)A2(q_ I 2(n-l) (el0)

In equation (C!0) .... indicates that the su_ations are to be multiplied

together and that additional factovs comprised of su_ations of second-order
multiple reflections are omitted. These additional factors arise from back-

transmissions and re-reflections that originate with first-order tens (e.g.,

El, E2, ..., En and FI, F2, ..., Fn).

Ignoring second-order multiple reflections within the lattice layers, the

lattice transfer function T is obtained by combining equation (el0) with

equation (3) to obtain equation (16) in the main text.
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Simulated raw data A 

(a) Mean grain size, 2 vm. c = 1.016~10-~; m 1.835; least squares coefficient = 0.99954. 

log frequency, MHz 

(b) Mean grain size, 4 Pm. c m  1.143~10-~; m - 1.975; least squares coefficient = 0.99947 

Figure 9. - Simulation of attenuation-coefficient-versus-frequency data i n  10- to 100-MHz range using equation (34) and 
determination of c and m values by least squares f i t  to equation 114) from 15 to 100 MHz. v 0.56 cmlps; K g  0.007; 
G 0.007; h - 2.0x10-~. 
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(c) Mean gra in  size, 6 Fm. c m  l.l86xl0-~; m 2.08; least squares coefficient = 0. 99921. 

log frequency, MHz 

(dl Mean grain size, 8 pm. c - 1.200~10-~; m 2.166; least squares coefficient - 0.99906. 
Figure 9. - Continued. 
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Figure 10.- Interrelations betweenexperimentally determined
attenuation parameters c and m from equation (14) for
two maraging steels. Datafrom Vary (1978).
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